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Abstract

A common feature of convergent plate boundaries is the self-organization of strain, exhumation and topography along discrete, arcuate
boundaries. Deviations from this geometry can represent first-order changes in stress applied at a plate boundary that must affect how strain is
partitioned within the interior of an orogen. The simplicity of the Himalayan fold and thrust belt seen along its central portion breaks down along the
eastern extremity of the arc where the 400 km-long Shillong Plateau has developed. This change in strain partitioning affects nearly 25% of the arc and
has not previously been considered to be important to the orogen's development. New low-temperature thermochronometry data that suggest this
structure initiated in mid to lateMiocene time, significantly earlier than was previously estimated from the sedimentary record alone. Development of
the Shillong Plateau may be linked to a number of kinematic changes within the Himalayan and Burman collision zones that occur at the same time.
These events include the onset of E–Wextension in central Tibet, eastward expansion of high topography of the Tibetan Plateau, onset of rotation of
crustal fragments in southeastern Tibet, and re-establishment of eastward subduction beneath the Indo-Burman ranges. We suggest that the
coincidence of these tectonic events is related to the ‘dismemberment’ of the eastern Himalayan arc, signifying a change in regional stress applied
along the India–Eurasia–Burma plate boundaries. Discrepancies between vertical long-term faulting rates and geodetically derived far-field
convergence rates suggest that the collisional boundary in the eastern Himalayan system may be poorly coupled due to introduction of oceanic and
transitional crust into the eastern plate boundary. The introduction of dense material into the plate boundary late in the orogen's history may explain
regional changes in the strain field that affect not only the Himalaya, but also the deformation field more than 1000 km into the Tibetan Plateau.
© 2008 Published by Elsevier B.V.
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1. Introduction

Understanding the relationship between fold and thrust belt
deformation developed at a convergent plate boundary, and the
propagation of strain, topography and crustal thickening away
from that plate boundary to form an orogenic plateau is a first-
order question in continental dynamics. The archetypical ex-
ample of such is the Himalaya fold and thrust belt and the
Tibetan Plateau, which have formed in response to ongoing
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continental convergence between India and Eurasia. Nearly a
third of modern plate convergence is neatly concentrated across
a few tens of kilometers in the central Himalaya — a rela-
tionship that changes dramatically along strike. In the eastern
Himalaya system, strain is more widely distributed. Also, the
downgoing plate is composed of transitional and oceanic
lithosphere, and the complexity of oblique subduction beneath
the Burma micro-plate is introduced. The unique eastern Hima-
laya system east of 88°E latitude represents nearly 25% of the
length of the arc and yet has been poorly considered to be a
significant geodynamic influence on the orogen's development.

A dramatic and unique feature of the eastern Himalaya
system is the deformation of the Indian foreland basement
teau and the beginning of the end for the Eastern Himalaya, Earth Planet. Sci.
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beneath the Shillong Plateau. The Shillong Plateau occupies a
region between the nearly orthogonal thrust belts of the south-
vergent eastern Himalaya and the west-vergent Indo-Burman
ranges, which accommodate convergence between India and
Eurasia and oblique convergence between India and the Burma
micro-plate, respectively (Fig. 1). It is arguably the largest,
active basement fold structure in the world, and is 5 to 10 times
larger than its commonly-cited analogs found in the Laramide
orogeny of the western US or the Sierras Pampeanas of the
Andean orogen (Allmendinger et al., 1983; Cross, 1986).
Newly available SRTM 90-meter resolution digital topography
data of the Shillong Plateau show a smooth, regular erosion
surface that defines a doubling-plunging, south-vergent anti-
cline composed of Proterozoic and Archean basement rocks in
the core of the range and dipping Cretaceous to Miocene(?) age
sedimentary rocks on the limbs (Fig. 2). The crest of this
anticline is flat-topped, giving rise to the moniker ‘Shillong
Plateau’. Archean and Neoproterozoic granites and gneisses of
the peninsular Indian shield are exposed along most of the
central and northern portions of the anticline, while up to 6 km
of Cretaceous through Miocene, marine to continental sedi-
mentary rocks are preserved unconformably over basement
along the eastern, western and southern limbs (Evans, 1964;
Das Gupta et al., 1964; Das Gupta and Biswas, 2000; Ghosh
et al., 2005) (Fig. 1). The orientation of these sedimentary rocks
generally follows the overall topographic trend of the anticline,
except in the south where normal displacements occur locally
UN
CO

RR
EC

Fig. 1. Geological map of the Shillong Plateau and surrounding region. (U-Th-Sm
transect (Table 1). Abbreviations: MFT, Main Frontal Fault; MBT, Main Boundary
Thick lines represent faults and fold axes. Thin lines west and east of the plateau repre
et al., 1964; Chowdhury, 1973; Biham and England, 2001, India, 2002; Srinivasan, 20
location of major and micro plates relevant to this study. Red, green and blue lines rep
of the references to colour in this figure legend, the reader is referred to the web ve
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7within the Cenozoic strata (Srinivasan, 2005). Rocks of the
7Shillong Plateau over thrust shelf to basinal facies sedimentary
8rocks of the Sylhet Trough (Bengal Basin) to the south (Das
8Gupta et al., 1964) (Fig. 1).
8We interpret the anticlinal folding of sedimentary strata and
8exposure of the basement core to be the result of a blind or
8emergent reverse fault system at depth (Fig. 1). The existence of
8thrust or reverse faults beneath the Shillong Plateau is supported
8by gravity data and compressional earthquake focal mechan-
8isms (Verma and Mukhopadhyay, 1977; Chen and Molnar,
81990; Mitra et al., 2005), although the sense of motion along the
8southern bounding fault of the Shillong Plateau (Dauki Fault)
9has been controversial (Oldham, 1854; Oldham, 1899; Evans,
91964; Hiller and Elahi, 1984; Johnson and Alam, 1991; Biham
9and England, 2001; Srinivasan, 2005). Modeling of triangula-
9tion data following the 1897 Assam earthquake suggests that the
9northern edge of the Shillong Plateau is controlled by a steeply
9dipping fault that penetrates most, if not all of the crust, and
9mirrors motion on the steeply dipping Dauki Fault to the
9south (Chen and Molnar, 1990; Biham and England, 2001). A
9seismogenic lower crust is supported by deep diffuse seismicity
9(Kayal et al., 2006) and steep bounding faults are a geometry
1that is commonly observed in analogous basement compres-
1sional structures in many other orogens (Narr and Suppe, 1994).
1Digital topography shows that the exposed basement rocks are
1intensely fractured and that rivers are deeply incised only in
1their lower reaches along the southern boundary, and along a
T

)/He sample locations (stars) where southernmost sample location is a vertical
Thrust; MCT, Main Central Thrust; STDS, South Tibetan Detachment System.
sent isopach depth contours (m) of Himalayan foredeep. Map sources (Das Gupta
05; Hollister and Grujic, 2006; Robinson, 2006) and this study. Inset map shows
resent convergent, transform, and divergent plate boundaries. (For interpretation
rsion of this article.)
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Fig. 2. (U-Th-Sm)/He age/depth plot and sample map with digital topography. Open diamond symbols represent samples collected along a horizontal N–S transect.
Solid symbols represent vertical (elevation) transect collected in river gorge. Sample ages are mean ages and error bars represent 2σ standard error of single-grained
replicate analyses (Table A1).
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west-northwest trending topographic step within the northern
limb of the anticline. While some south-draining river canyons
reach 1.5 km deep, incision is limited to short, downstream
reaches of the major rivers and the landscape overall is not
extensively dissected. Lack of fluvial dissection preserves the
basement/cover unconformity that defines the surface of the
basement fold.

Shortening strain in the eastern Himalaya is widely distributed
over several hundred kilometers and includes basement rocks of
the underthrust plate (India), whereas strain in the western and
central Himalaya occurs in amore narrowly focusedmanner across
a few tens of kilometers and rarely more than 100 km (Das Gupta
et al., 1964; Gansser, 1983; Bilham et al., 1997; Lave and Avouac,
2000; Wobus et al., 2005). Recently measured GPS velocities
suggest that possibly as much as 30% of the 15–19 mm/yr of
convergence across the eastern Himalayan system occurs across
the Shillong Plateau (Biham and England, 2001; Jade et al., 2004).
Furthermore, approximately 30% of the Tibetan Plateau (~30%)
sits north of the eastern Himalaya and adjacent India/Burma plate
boundary. Understanding eastward expansion of the Tibetan
Plateau may in part depend on understanding how changes at the
plate boundary affect strain distribution far within the orogen.
Deformation of the Shillong Plateau signals differentiation of the
eastern Himalaya from the rest of the Himalaya and a regionally-
significant change in how strain is partitioned at the plate boundary.
Therefore the timing of Shillong deformation can be used to assess
the relationship between deformation at the plate boundary
(Himalaya) and the interior of the orogen (Tibetan Plateau).

2. Timing of deformation and tectonic interpretation from
basinal stratigraphy: summary of previous work

Previous estimates for timing of fault motion beneath the
Shillong Plateau are based on the sedimentary record of the
Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
Lett. (2008), doi:10.1016/j.epsl.2008.01.045
TE
DSylhet Trough (or Surma Basin), a province of the larger Bengal

Basin. These estimates vary considerably from the Oligocene–
Miocene boundary to Pliocene time. Basinal strata are also
preserved along the up-thrust margins of the Shillong massif
itself. However, tectonic interpretation of basinal stratigraphy
is hampered by multiple sources of tectonic loading and sedi-
ment supply (Himalaya, Shillong Plateau, and the Indo-Burman
Ranges) as well as uncertainties in the age designation of
Neogene units. Sedimentary rocks reach thicknesses up to 16–
17 km in the Bengal Basin and thin northward to 4–5 km on the
southern Shillong Plateau. Sequences consist of late Mesozoic
and Cenozoic shallow marine, continental shelf and deltaic
facies that grade upward to fluvial/floodplain deposits of late
Miocene or Pliocene age (e.g., Evans, 1964; Hiller and Elahi,
1984; Brune and Singh, 1986; Johnson and Alam, 1991; Uddin
and Lundberg, 1998a,b; Alam et al., 2003). The oldest sedi-
mentary rocks suggest that the southern boundary of the
Shillong Plateau initiated as a rift margin in early Cretaceous
time (Curray et al., 1982; Salt et al., 1986). Sedimentation
continued in a passive-margin setting throughout Palaeocene
and Eocene time, and is represented by a shelf to basin trans-
gressive sedimentary sequence followed by a regressive se-
quence of prograding shelf and slope sediments by Late Eocene
time after the India–Eurasia collision commenced (Banerji,
1981; Rao Ranga, 1983; Rowley, 1996).

Some workers regard the mid-Eocene transgression as the
earliest signal of foreland subsidence in response to Himalaya
thrusting because of the coincidental timing between trans-
gression and hard-collision of India with Eurasia (Alam et al.,
2003), while others suggest that Himalayan influence in the
sedimentary record of the Sylhet trough does not begin until
possibly Oligocene, and probably not until early Miocene
time based on sandstone petrology and heavy mineral suites
(Uddin and Lundberg, 1998a,b, 2004) or detrital mica 40

Ar/
39 Ar
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thermochronology (Rahman and Faupl, 2003). A more likely
dominant tectonic influence on basin sedimentation during
Oligocene to Miocene time is the encroachment of the Indo-
Burman ranges from the east, which is supported by the east-
ward thickening of sedimentary units and the greater proximity
of the Bengal Basin to the Indo-Burman ranges than the Hi-
malaya during this time (Johnson and Alam, 1991; Uddin and
Lundberg, 2004).

Alam et al. (2003) suggested that the marine transgression in
the Bengal Basin at the Oligocene–Miocene boundary rep-
resents flexural loading in response to fault motion on the Dauki
Fault and the rise of the Shillong Plateau. However, Oligocene
and Miocene age rocks do not thicken northward in the Sylhet
Trough as might be expected if the Shillong Plateau initiated
flexural subsidence during this time (Johnson and Alam, 1991).
During late Miocene to Pliocene time, the upward transition
from the prodelta-deltaic sequences of the marine Surma Group
to the fluvial non-marine Tipam group, with an accompanying
dramatic increase in sedimentation rate and northward thicken-
ing of sedimentary strata, has also been regarded as the initial
timing of flexural loading and subsidence due to thrust faulting
along the Dauki Fault (Johnson and Alam, 1991). However, age
designations of the Surma to Tipam group transition as iden-
tified by a regional stratigraphic marker (Upper Marine Shales)
vary considerably from ~11 Ma to as young as 4 Ma (Johnson
and Alam, 1991; Uddin and Lundberg, 1998a,b; Worm et al.,
1998; Alam et al., 2003). These sequences lack precise age
dating by radiometric ages or age-indicative fossils and instead
rely on lithostratigraphic correlation with other locations in
India, magentostratigraphic sections lacking independent age
constraints, and unpublished, oil-industry palynological reports
(Evans, 1932; Rao Ranga, 1983; Banerji, 1984; Hiller and
Elahi, 1984; Johnson and Alam, 1991; Reimann, 1993; Uddin
and Lundberg, 1998a,b; Worm et al., 1998; Alam et al., 2003;
Uddin and Lundberg, 2004).

Uncertainties in stratigraphic age designations and multiple
sources of detritus limit our ability to interpret the timing of
fault motion beneath the Shillong Plateau from the sedimentary
record to broadly Oligocene–Pliocene time. Such broad age
estimates hamper our ability to relate deformation of the Shil-
long Plateau with other regional tectonic events, or to produce
geologic faulting rates spanning less than an order of mag-
nitude. Cooling histories derived from thermochronometry data
UNTable 1
Sample locations and mean (U-Th-Sm)/He ages

Sample Latitude Longitude Elevation

(°N) (°E) (m)

04SH3 25.3722 91.6349 1558
04SH4 25.3433 91.6997 1543
04SH5 25.3452 91.7008 1450
04SH6 25.3475 91.7004 1318
04SH7 25.3492 91.6999 1211
04SH8 25.3517 91.6994 1137
04SH9a 25.5179 91.8127 1721
04SH10 25.8478 91.8777 574
04SH13 26.1625 91.7130 93

Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
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2may provide an unambiguous measure of tectonic activity and
2a more precise age estimate of faulting than the stratigraphic
2record alone.

23. Timing of deformation from apatite (U-Th-Sm)/He
2thermochronometry

2Samples collected for low-temperature thermochronometry
2along horizontal and vertical transects can give information
2about the spatial distribution of erosion and timing of erosional
2events related to structural activity. We collected 14 samples for
2apatite (U-Th-Sm)/He dating along a north–south horizontal
2transect across the central plateau and a vertical transect within a
2single river gorge that incises the southern margin of the plateau
2(Figs. 1 and 2). We aim to determine the thickness of paleo-
2sedimentary cover and subsequent erosion of the plateau surface
2and the timing of initial fault motion from accelerated erosion
2rates related to vertical motion across a reverse fault. Samples
2were collected from Neoproterozoic granites and granitic
2gneisses (Ghosh et al., 2005) and 4 to 11 single-grained rep-
2licate analyzes were measured for each sample depending
2on apatite yield and quality, which varied between samples
2(Tables 1 and A1). Sample preparation and analytical methods
2are described in Appendix A.
2Four samples were collected at or within 150 m depth below
2the plateau surface from the most northern exposure of bedrock
2in the Brahmaputra valley to the southern edge of the anticli-
2nal crest. These ages vary systematically both from north to
2south and with increasing depth from 115.7 to 13.9 Ma (Fig. 2;
2Table 1). Six samples collected above and within a narrow river
2gorge on the southern limb of the anticline (including sample
204Sh3 which overlaps the two transects) have mean ages
2clustered between 13.9 and 8 Ma (Table 1) excluding Sample
204Sh5, which reproduced poorly compared to other samples
2and is not included in Fig. 2 (Table A1). While the mean ages
2do not systematically decrease in age, as may be theoretically
2expected in response to erosional exhumation, the narrow range
2of helium ages and overlap of replicate ages suggests that rapid
2exhumation initiated within this time interval. In particular, the
2change from broadly distributed mean ages within 150 m depth
2of the plateau surface to a narrow age range at greater depth is
2also suggestive of accelerated cooling rates associated with
2increased exhumation focused at the southern plateau margin.
Lithology Mean age No. replicates

(Ma±2σ)

Porphyritic granite 13.9±3.6 8
Granite 8.0±2.0 4
Granite 22.5±15.6 8
Granite 13.9±4.6 11
Granite 8.1±4.2 4
Granite 10.1±3.6 7
Granite 40.4±12.2 6
Granitic gneiss 103.2±23.2 4
Granitic gneiss 115.7±29.6 4

teau and the beginning of the end for the Eastern Himalaya, Earth Planet. Sci.
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We regard the age range of 14 to 8 Ma to best represent the
possible range of initial of rapid cooling.

The broad age range at shallow intervals is typical of samples
that spent a long residence time in the partial retention zone and
were either closed or partially closed to helium diffusion during
a later exhumation event that exposes them at the surface today.
The change from a broad age range to a narrow age range with
respect to depth (i.e. a change from slow or no cooling to rapid
cooling) represents the depth of the base of the partial retention
zone (PRZ) at the time of the onset of rapid cooling. Using a
closure temperature based on a model of radiation damage and
cooling rate (60 °C) (Schuster et al., 2006), the exposure of a
paleo-PRZ also represents a paleodepth estimate of 1.7–3.3 km
at the time of closure to helium diffusion for a range of typi-
cal continental geothermal gradients (15–30 °C and surface
temperature 10 °C). A paleo-PRZ depth of ~150 m beneath the
modern plateau surface suggests that 1.7–3.3 km of overburden
must have existed above our transect at the time of initiation of
rapid exhumation and has been removed since fault activity
began. This overburden is likely to have been Mesozoic to
Cenozoic age sedimentary rocks that once capped the central
plateau and are still preserved on the southern and lateral
flanks of the plateau. Our estimate of overburden is less than the
4–6 km of sediment preserved on the flanks of the plateau
(Johnson and Alam, 1991). This discrepancy may reflect vari-
ations in the sediment thickness across the plateau, or uncertainty
in the geothermal gradient or closure temperature. Estimates of
the amount of eroded overburden above the central plateau are
used to calculate vertical fault motion in Section 6.

Determination of long-term fault slip rates requires an under-
standing of the fault geometry at depth, which has been contro-
versial (Srinivasan, 2005; Chen and Molnar, 1990; Biham and
England, 2001; Seeber and Armbruster, 1981; Rajendran et al.,
2004; Biham). In the next section, we examine geomorphic data
as evidence of active faulting patterns.

4. Geomorphology and fluvial analyzes

Bedrock river channel gradients are sensitive indicators of
variable rock uplift rates in an actively deforming region and
can be used qualitatively to identify faulting patterns. This
approach can be particularly useful in remote areas, areas of
dense vegetative cover, or where the lack of appropriate aged
rocks involved in recent deformation inhibit determination of
young or active faulting. We utilized the method outlined by
Kirby et al. (2003) for determining normalized steepness values
for channel segments based on a stream-power law for bedrock
erosion and the hydrologic processing methods given by Niemi
and Oskin (2004). These methods employ a commonly-used,
empirical scaling law that relates local channel slope (S) of a
river to the contributing drainage area (A) at that channel seg-
ment, where drainage area is a proxy for discharge through the
channel parameters of steepness (ks) and concavity (θ) (e.g.,
Flint, 1974):

S ¼ ksA
�h; ð1Þ
Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
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Using a reference concavity value (θref), we calculate quan-
tified normalized steepness values (ksn) of stream segments to
identify regions of high steepness that may indicate increased
relative rock uplift rates due to reverse faulting across proposed
structures. Channel slope and drainage area data were extracted
from a hydrologically-corrected, 90-m resolution DEM (STRM
data) in order to calculate

ksn ¼ SAh; for reference href ¼ 0:45: ð2Þ

Using hydrologic routing, channel pixels with contributing
drainage area greater than a threshold value of 0.1 km2 were
selected then divided into 0.5 km channel segments over which
channel slope was averaged by a least squares fit to the eleva-
tion profile of the channel segment. Using Eq. (2), normalized
channel steepness was determined for each channel pixel from
the average channel slope for a segment centered on that pixel
and the contributing drainage area to that pixel. Data noise was
reduced by eliminating segments with poor slope regressions
(R2b0.5) and negative or zero slope values.

Normalized channel steepness values range from 1 to 5600,
although most values are b100 (Fig. 3). Values N700 occur in
isolation, over a single channel segment, and are likely caused
by data artifacts, such as artificial steps in the DEM created
during processing or data dropout, jointing/boulder cascades
creating stepped profile segments, non-bedrock channel erosion
processes especially in headwater regions (low drainage area
regions), or other transient erosion processes occurring at or
near knickpoints or knickzones. Because a contrast in lithology
can also affect the steepness values due to differences in
erodibility, we only consider values within the basement core of
the anticline and neglect consideration of the lateral flanks of
the plateau where significant sedimentary cover is still present
(Fig. 1). For stream values with drainage area N40 km2, the
highest consistent ksn values that occur over several channel
segments is 500 in deeply incised streams along the southern
and northeastern plateau boundaries, and up to 700 in streams
incised into the hanging wall block of the proposed Oldham
fault.

We interpret high steepness values in the south to reflect
higher vertical motion along the steep limb of the anticline and/
or to channel segments that are in a transient phase adjusting to
south-vergent folding. Most major south-draining channel
segments contain abrupt knickpoints or knickzones that sepa-
rate lower gradient headwater portions within the fold axis with
much steeper gradients on downstream portions of channels
draining the steep, south-facing limb of the anticline above the
Dauki Fault. Deep channel incision and canyon-cutting into
bedrock of up to 1500 m depth occurs only downstream of
major knickpoints. The pattern of high steepness values along
the southern plateau margin does not discriminate between a
model where a steep anticline develops above a blind thrust
fault, or whether the Dauki Fault must project to the surface.
There is an obvious pattern of high steepness values oriented
along the proposed surface projection of the Oldham Fault that
does not correlate with a lithologic change or variation in jointing.
We interpret these high steepness values as confirmation of the
teau and the beginning of the end for the Eastern Himalaya, Earth Planet. Sci.
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Bilham and England (Biham and England, 2001), contrary to the
suggested lack of surface fault expression argued by Rajendran
et al. (2004).

5. Constraints on structural geometry beneath plateau

The spatial extent of deformation associated with the Shil-
long Plateau can be estimated from both the extent of exposed
basement and sedimentary rocks and the limit of missing or
attenuated foredeep deposits surrounding the plateau (Fig. 1).
Thin foredeep deposits exist west of the Shillong Plateau to the
Malda-Kishanganj Fault where they abruptly deepen from
500 m to several kilometers across this structure (India, 2002).
Northeast of the Shillong Plateau, the foredeep eventually
deepens to 4–6 km about 100 km northeast of the exposed
basement and elevated topography of the Mirkir Hills (India,
2002) (Fig. 1). Isolated basement outcrops within the Brah-
maputra valley are evident from field observations and digital
topography maps and suggest that sedimentary deposits are
unusually thin (a few to several hundred meters) for at least
50 km north of the Shillong Plateau (India, 2002; Rajendran
et al., 2004). The exact thickness of sedimentary deposits
proximal to the Himalayan range front north of the Shillong
Plateau is unknown, but is estimated to be not more than 1 km
thick based on gravity values and the width of the Himalayan
Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
Lett. (2008), doi:10.1016/j.epsl.2008.01.045
3foredeep is no more than 30 km wide (Mathur and Evans, 1964)
3whereas it is 200 km wide in Nepal. Himalayan foredeep sedi-
3ments are exposed in Bhutan in the hanging wall of the Main
3Frontal Thrust (MFT). A homoclinally, north-dipping section of
3fluvial sandstones and conglomerates suggest that at least 6 km
3of foredeep sediments were deposited proximal to the Hima-
3laya prior to deformation of the MFT (Gansser, 1983)(N. Mc
3Quarrie, pers. comm.). A precise stratigraphic age of these sedi-
3ments has not been determined, but are likely correlative with
3the Upper Miocene to Pleistocene Silwalk Group in Nepal and
3Pakistan [N. Mc Quarrie, pers. comm.].
4The interpretation of triangulation data from the 1897 Assam
4earthquake suggests that the Oldham Fault ruptured on a steeply
4dipping plane from between 9 km to at least 25 km, and possibly
4the entire crust (Biham and England, 2001) (Fig. 4). This con-
4straint requires that the Dauki Fault must also be steeply dipping.
4However, we suggest that the Oldham fault is not a bounding
4structure to the Shillong Plateau, as in a pop-up structure. It does
4not form the northern topographic boundary of the plateau,
4but rather forms a small topographic step that is largely within
4the plateau itself and causes only a minor offset in the largely
4anticlinal geometry of the plateau (Figs. 2 and 4). Most im-
4portantly, Himalayan foredeep rocks present east and west of the
4Shillong Plateau are missing beneath the Brahmaputra valley,
4directly north of the Oldham Fault and the plateau itself (Fig. 1).
4This requires that a structural block beneath the Brahmaputra
teau and the beginning of the end for the Eastern Himalaya, Earth Planet. Sci.
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valley also have moved upward causing the erosion of foredeep
sediments.

We propose that the Oldham Fault is a backthrust to a master,
blind, north-dipping fault at depth where a block beneath the
Brahmaputra valley acts as the primary hanging wall and a
structural wedge develops to form the Shillong Plateau (Fig. 5).
We base our proposed geometry on geometric models for
commonly occurring basement structures that best fit our struc-
tural observations and existing geophysical data (Narr and
Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
Lett. (2008), doi:10.1016/j.epsl.2008.01.045
Suppe, 1994) (Fig. 5). In this model, the surface feature that has
been mapped as the Dauki Fault is a fold axis propagating from
a blind fault at depth instead of an emergent structure (Fig. 5).
Our fault geometry is constrained by the dip of the Oldham
Fault (Biham and England, 2001), the depth of the Oldham
Fault (Biham and England, 2001), the dip of the south flank of
the plateau surface, and the width of the flat-topped portion of
the central plateau. A structural block at depth underlies the
Brahmaputra valley and moves upward relative to a block
teau and the beginning of the end for the Eastern Himalaya, Earth Planet. Sci.
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beneath the Sylhet Trough (Bengal Basin). Upward motion of
the Brahmaputra valley causes erosional removal of Himalayan
foredeep sediments and produces a step in the Moho that is
consistent with the geophysical data (Verma and Mukhopad-
hyay, 1977; Mitra et al., 2005). The master fault bifurcates at
depth into a north-dipping fold axis and a south-dipping
backthrust. The fold axis migrates north in time as the structure
grows. Using the constraints above, we calculate a dip of 53°
for the master fault at depth. Alternatively, the Dauki Fault is
emergent and breaks through the entire crust, but does not link
kinematically with the Oldham Fault. In this scenario, the Dauki
Fault must dip at least 35° in order to obey the geometry of
an Oldham Fault extending to depths of 30 km (Biham and
England, 2001). Also additional faults must exist beneath the
Brahmaputra valley to accommodate its vertical motion. How-
ever, there is no surface expression of these faults in the mor-
phology or gravity field of the Brahmaputra valley.

6. Initiation of faulting, fault slip rate and erosion rate

In a compressional tectonic setting, an increase in apparent
exhumation rate on an age/elevation diagram is generally as-
sumed to be an acceleration of erosion rate related to the upward
motion of hanging wall rocks (Wagner and Reimer, 1972;
Wagner et al., 1977; Fitzgerald et al., 1995; Reiners and
Brandon, 2006). Using both thermochronometry data and the
stratigraphy of the Sylhet Trough, we consider the initiation of
faulting, faulting rates and erosion rates independently. Three
aspects of the age-elevation diagram are useful to constrain
timing of fault initiation, fault slip rate, and erosion rate fol-
lowing fault initiation respectively: (1) a change in exhumation
rate, (2) the depth of the paleo-PRZ, and (3) the age-elevation
slope of rapidly cooled samples or the helium age at mean
elevation. Determination of these ages and rates requires the
following assumptions.

(1) We assume that the change in exhumation rate at between
8 and 14 Ma represents the age of fault initiation. This
assumption implies that faulting beneath the Shillong
Plateau must have produced enough topographic relief
under an erosive climate regime such that accelerated
Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
Lett. (2008), doi:10.1016/j.epsl.2008.01.045
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4erosion rates occurred immediately after faulting began.
4This assumption may be invalid if initial relief changes
4were small, if minimally-erosive climate conditions ex-
4isted at the time of faulting, or if the geologic setting
4suggests that faulting is not commensurate with sub-aerial
4exposure, such as a marine setting. If any of the assump-
4tions are invalidated by one of the aforementioned con-
4ditions, then the timing of accelerated erosion represents a
4minimum age of faulting because accelerated erosion
4rates may have lagged behind fault initiation. Rapid
4cooling beginning between 8 and 14 Ma is contempora-
4neous with a Miocene age marine transgression (Upper
4Marine Shales of the Surma Group) followed by a Mio-
4cene to Pliocene (?) age to a northward thickening se-
4quence of continental fluvial-deltaic sandstones (Tipam
4Group), and an acceleration in subsidence rate in the
4Sylhet Trough (Hiller and Elahi, 1984; Johnson and
4Alam, 1991; Reimann, 1993; Worm et al., 1998; Alam
4et al., 2003; Rahman and Faupl, 2003). The marine to
4continental transition, geometry and rate of continental
4deposition in the foredeep south of the Shillong Plateau
4have been suggested to be related to fault initiation
4(Johnson and Alam, 1991) with an upper age limit for this
4stratigraphic transition at 11 Ma (Hiller and Elahi, 1984;
4Johnson and Alam, 1991; Reimann, 1993; Worm et al.,
41998; Alam et al., 2003; Rahman and Faupl, 2003).
4Therefore we suggest that accelerated erosion rates of
4the Shillong Plateau can be temporally associated with
4flexural loading in the Sylhet Trough due to faulting and
5sub-aerial exposure of the hanging wall rocks evident by
5the marine to continental change in sedimentary deposi-
5tional environment.
5Modern heavy orographic precipitation occurs across the
5Himalaya foreland (Anders et al., 2006) and because high
5relief of the Himalaya reasonably existed during Miocene
5time, minimally-erosive climate conditions that may have
5forestalled an acceleration in erosion rates are unlikely.
5(2) Whereas we assume that fault initiation triggers an ac-
5celeration of erosion rate, it is not necessary to assume
5that the ensuing erosion rate is equivalent to the vertical
5fault slip rate. In fact, we expect that the long-term
teau and the beginning of the end for the Eastern Himalaya, Earth Planet. Sci.
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vertical fault slip rate has outpaced erosion because up to
2 km of topography has been created since deposition of
marine strata in Miocene time (upper Surma Group). We
independently determine the long-term fault slip rate
using the base of the paleo-PRZ as a passive marker to
vertical deformation. To determine fault slip rate, we
establish the offset of a reference horizon in both fault
blocks, in this case the offset of the 8–14 Ma land surface
across the Dauki Fault (Fig. 6). We use the base of the
paleo-PRZ to reconstruct the land surface of the hanging
wall at 3.3–4.9 km modern elevation by assuming a
geothermal gradient (15–30 °C/km) and closure tem-
perature (60 °C) (Fig. 6). Sedimentary evidence suggests
that the transition from the Surma to the Tipam Group
likely represents the interval of faulting (Johnson and
Alam, 1991). We use the base of the northward thickening
Tipam Group sediments at 6 km depth below sea level
in the Sylhet Trough (Johnson and Alam, 1991) as the 8–
14 Ma land surface in the footwall. Offset between these
two surfaces (fault throw) since 8–14 Ma gives a long-
term average vertical fault slip rate of 0.7–1.4 mm/yr
(Fig. 6). It is important to note that this fault slip rate is
faster than the ‘rock uplift’ rate (cf. Molnar and England,
1990) because the latter only considers motion of the
hanging wall block and neglects the downward motion of
the footwall block.

(3) Erosion rate is typically determined from the slope of
rapidly cooled samples on the age-elevation diagram
(Wagner and Reimer, 1972; Wagner et al., 1977;
Fitzgerald et al., 1995; Reiners and Brandon, 2006).
Neglecting the effect of advection, which is small in cases
of moderate or slow exhumation rates, and the horizon-
tal spacing between samples on a ‘vertical’ transect (e.g.
Moore and E.P.C., 2001; Ehlers and Farley, 2003), which
was minimal due to our sampling strategy, the apparent
exhumation rate is a measure of the long-term erosion
rate. An average erosion rate can also be compared to a
steady erosion rate based on the depth of the modern
UN
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Fig. 6. Diagram of offset markers used to calculate fault slip and erosion rates.
Thick black line represents modern topography. Dot-dashed black line
represents the median reconstructed land surface of the Shillong Plateau based
on the position of the paleo-PRZ (hanging wall) and the beginning of fault
related foredeep deposition in the Sylhet Trough (footwall). Vertical offset of
these two horizons is fault throw since 8–14 Ma. Offset between paleo-PRZ
(dot-dashed grey line) and the modern PRZ (solid grey line) since 8–14 Ma is
used to calculate erosion rate.
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closure isotherm versus the helium age at the mean
elevation of the landscape (Reiners and Brandon, 2006)
or a ‘zero age intercept’ concept where the age-elevation
erosion rate is projected to a ‘zero age’ and compared to
the modern depth of the closure isotherm (Parrish, 1983;
Farley et al., 2001). Comparison of steady erosion rates to
the erosion rate defined by the sample transect evaluates
whether erosion rates determine from the age-elevation
plot can be extrapolated to the present. We calculate an
average (steady) erosion rate (cf. Reiners and Brandon,
2006) of 0.1–0.4 mm/yr based on a closure temperature of
60 °C (Farley, 2002; Schuster et al., 2006), a range of
geothermal gradient between 15 and 30 °C/km, a surface
temperature of 10 °C, and an average age of 8–14 Ma.
Scatter of single-grain age measurements in the Shillong
data prohibit a meaningful regression through the mean
age/elevation data however the steady rate of 0.1–
0.4 mm/yr is consistent with the age data (Fig. 2).

We call particular attention to the fact that the vertical slip
rate (0.7–1.3 mm/yr) is greater than the average erosion rate
(0.1–0.4 mm/yr) by at least a factor of two despite the extreme
precipitation that falls on the Shillong Plateau (avg. 6 m/yr). In
fact, the south-central plateau touts its fame as the ‘rainiest place
on earth’ where precipitation can average 12 m/yr! (Bookhagen
et al., 2005) Furthermore, a strong monsoon climate since at
least 7–8 Ma (e.g. Kroon, 1991; Prell et al., 1992; Dettman
et al., 2001; An et al.) causes a strong seasonality to the dis-
tribution of rainfall, which creates intense summer rain storms
in Shillong. Despite what might be considered the most extreme
erosive conditions imaginable, erosion has not kept pace with
faulting over approximately the last 10 million years.

7. Comparison of long-term fault slip rateswith geodetic rates

Using our proposed fault geometry (Fig. 5) and vertical slip
rates determined above, we calculate the horizontal shortening
rate across the Shillong Plateau to be 1.0–2.0 mm/yr. Use of a
shallower dip for the Oldham Fault (35°) produces higher
horizontal shortening rates of about 1.5–2.9 mm/yr; however,
lower rates are obtained if the geodetically determined fault dip
of 57°±8° for the Oldham Fault prevails also in the Dauki
system (Biham and England, 2001) (Fig. 5).

Faulting rates determined here are at least half of previously
determined fault rates based on a Pliocene age of fault initiation
derived from the stratigraphic record, and are in poor agree-
ment with published GPS velocities (6±6 mm/yr, Biham and
England, 2001) and (4.3±4.8 mm/yr, Jade et al., 2004). How-
ever, recent GPS measurements show that Shillong's conver-
gence with India lies at the lower bound of these estimates
(3±1 mm/yr, [W. Szeliga, personal communication 2007]),
in good agreement with our uplift rates. It is important to note
that our helium results record vertical uplift rates, while the GPS
data measure horizontal convergence. The two rates are linked by
the subsurface geometry of faults beneath the Shillong Plateau
and in principle the two rates can be used to constrain this
geometry. The calculation, however, requires us to assume that the
teau and the beginning of the end for the Eastern Himalaya, Earth Planet. Sci.
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present day active structures are similar to the time-averaged
structures responsible for the helium uplift rates, and that viscous
processes associated with the 1897 earthquake are negligible. A
consideration of these effects is outside the scope of the present
article.

We propose that the geomorphic evidence for the Oldham
fault, together with modeling of triangulation data following the
1897 Assam earthquake for fault geometry (Biham and
England, 2001) requires that the faults beneath the Shillong
Plateau be steeply dipping. Steeply dipping faults yield
calculated horizontal shortening rates near the lower bound of
current GPS uncertainties.

8. Discussion

Altogether, we consider the area deforming around the
Shillong Plateau to encompass a region nearly 600 km eastward
by 150 km northward (90,000 km 2), which accounts for more
than 25% of the entire length of the Himalayan arc. We argue
that deformation encompasses not only the region of elevated,
exposed basement of the Shillong Plateau proper, but also
includes deformation of a much larger region of the foreland
where Himalayan foredeep rocks are attenuated or missing
(Fig. 1). The western extent of the attenuated Himalayan
foredeep at the Malda-Kishanganj Fault occurs at about 88°E
longitude, which is spatially coincident with other structural
changes within the Himalaya and southern Tibet. From west
to east across this boundary, a dramatic decrease occurs in the
extent of exposed Lesser Himalayan rocks in structural win-
dows or re-entrants; klippen of Tethyan Sedimentary Series
bounded by the South Tibetan Detachment System (STDS)
suddenly appear, and both the STDS and MCT and are located
at least 100 km further south than observed in the west; and the
Main Frontal Thrust (MFT) essentially disappears or is poorly
exposed (Gansser, 1983). Within southern Tibet, this boundary
coincides with the Yadong-Gulu rift system at ~88°E, the most
prominent rift system within southern Tibet that accommodates
east–west extension within the High Himalaya and southern
plateau. The Yadong-Gulu rift forms the boundary between east
and west extension within central Tibet and strike-slip systems
of eastern Tibet.

The scale of the Shillong Plateau has long been considered to
signify a massive departure from the simple Himalayan thrust
systems found elsewhere along the arc (Seeber and Armbruster,
1981). These authors were the first to propose a decollement
underlying the Brahmaputra valley. The partitioned conver-
gence we describe is manifest as a departure from the small-
circle geometry of the Himalaya established by the collision
process (Seeber and Gornitz, 1983; Bendick and Biham, 2001),
and there is no question that the partitioned convergence be-
tween Bhutan and Shillong reduces the seismic productivity
of Bhutan. The development of the Shillong structure relative-
ly recently in the collision process suggests that the eastern
Himalaya, at least, is evolving into something different than the
rest of the arc. Our discussion below focuses on the timing and
rate of this process. The question arises, however, whether the
process signifies the beginning of the end for the Himalaya, or
Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
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6whether the plateau is a non-propagating structure formed by
6conditions unique to the eastern end of the arc. If the Shillong
6plateau evolves will the load shedding potential of the plateau
6increase or diminish? There is some suggestion of increased
6development of the plateau to the east, with uplift decaying
6westward, but this could be the result of counter-clockwise
6rotation of Assam. No doubt future GPS measurements will
6determine the underlying motions needed to guide speculation
6on this important process.
6The shallow sedimentary cover in the Brahmaputra Valley
6north of the plateau, and the absence of a wide foreland basin
6south of Bhutan, may indicate the presence of additional dip slip
6faults north of the Oldham fault or vertical motion of a hanging
6wall block to the Dauki Fault at depth. Alternatively, it is
6possible that the crustal scale faults of the Shillong system have
6fractured the northeast Indian plate sufficiently to inhibit long-
6wavelength (N500 km) plate flexure south of the eastern
6Himalaya (W.A.B., 2001; Biham et al., 2003). In the central
6Himalaya, the bending moment load of the southern edge of the
6Tibetan Plateau and the forces of Indo-Asian convergence give
6rise to a 4–6 km deep trough near the frontal thrusts of the
6Himalaya, and a ~600 m high bulge underlying the central
6Indian plateau. Although the gravity field permits a narrow
6foreland basin, no outer-rise is manifest at the longitudes of the
6Shillong Plateau. Such a model explains the lack of subsidence
6and deposition in the Brahmaputra valley only since deforma-
6tion at Shillong began. An additional mechanism by which an
6older foredeep deposits (N10 Ma) would be removed or absent
6is still required.
6Deformation of the Shillong Plateau is also temporally co-
6incident with several major changes in regional strain patterns
6within the southern Tibetan Plateau and along its eastern mar-
6gin: onset of graben style extension in south-central Tibet at 18–
65 Ma (Pan and Kidd, 1992; Coleman and Hodges, 1995;
6Williams et al., 2001); eastward expansion of high topography
6in southeastern Tibet at ~9–13 Ma (Clark et al., 2005) and east-
6central Tibet at ~5–12 Ma (Kirby et al., 2002); initiation of
6clockwise rotation of crustal fragments around the eastern
6syntaxis at 4–8 Ma (Wang et al., 1998); and re-establishment of
6eastward subduction beneath the Indo-Burman ranges (Mitch-
7ell, 1993). Deformation of Silwalk equivalent rocks above the
7MFT (N. Mc Quarrie, pers. comm.), late Miocene monazite
7ages in the MCT at approximately 89°E latitude in Sikkim
7(Catlos et al., 2004), and deformation beneath Shillong suggest
7possible synchronous faulting of the MCT, MFT and Dauki
7fault in the eastern Himalaya since about 10 Ma.
7The current discrepancy between the long-term horizontal
7faulting rate derived from uplift (1–3 mm/yr) and recent geo-
7detic convergence rates (3–5 mm/yr) is an outstanding issue
7worth further exploration. Currently the two numbers can be
7reconciled only by invoking an unreasonably shallow dip to the
7Oldham and Daki faults (b40°), or the possible effects of
7residual high afterslip rates associated with the 1897 Shillong
7and Dhubri 1930 earthquakes. Convergence is currently par-
7titioned between Shillong and Bhutan in the ratio 1:n where n is
74±1, a ratio that will become more clear in the next decade
7as more GPS data become available. However, the surface
teau and the beginning of the end for the Eastern Himalaya, Earth Planet. Sci.
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convergence velocity fields of Bhutan and Shillong overlap in
the Brahmaputra Valley and northern Shillong plateau. Thus
even in the presence of much improved signal-to-noise GPS
velocities, the precise determination of the slip partitioning at
depth will remain ambiguous.

It is also possible that poor coupling between the underthrust
plate and the structures of the Shillong Plateau may prevail. If
the horizontal motion of the underthrust plate is only partially
transferred to the overriding plate, then one may expect the
horizontal and vertical faulting rates to be less in the Shillong
Plateau than otherwise predicted based on the far-field geodetic
convergence rate. Although poor coupling in this manner may
require modification of the structural geometry we propose.
One explanation for the lack of coupling beneath the Shillong
Plateau is the subduction of oceanic to transitional crust (Fig. 1).
The rheologic contrast of dense crust in the downgoing plate
and light continental crust in the overriding plate may be
responsible for the lack of complete coupling at this boundary
and may explain the discrepancy between high far-field hori-
zontal shortening rates determined by GPS and much slower
near-field vertical uplift rates interpreted from thermochronol-
ogy. Subduction of oceanic and transitional crust is unique to
the eastern plate boundary, and most likely, ultimately explains
why the eastern portion of the arc deforms differently from the
central and western arc.

Deformation of the Shillong Plateau represents a change in
the strain distribution of the eastern Himalaya fold and thrust belt
indicated by widening the region of active thrusting to several
hundred kilometers (Seeber and Armbruster, 1981). At the same
time, thrusting in the central Himalaya remains generally con-
centrated over a few tens of kilometers. The mid-late Miocene
change in strain partitioning in the eastern Himalaya possibly
explains the deceleration in erosion rates interpreted from
fission-track data in Bhutan without need to call upon cli-
matically driven changes suggested by Grujic et al. (2006).
Faulting localized at the southern boundary of the Shillong
Plateau occurs at the site of a paleo-rift margin that juxtaposes
normal thickness continental crust to the north with attenuated
continental crust and oceanic crust to the south (Fig. 1). We
propose that these changes may be related to the proximity of
transitional to oceanic crust at the main plate boundary, caused
by the continual northward motion of the Indian plate, which
reactivates a paleo-rift margin along the southern boundary of
the Shillong Plateau. Furthermore, we suggest that this change
from a continent–continent to continent–oceanic (or transi-
tional) plate boundary over a significant region of the Himalayan
system initiates a change in the stress field at the plateau
boundary which is reflected by changes to the strain field more
than 1000 km interior to the orogen.

9. Conclusions

New apatite (U-Th-Sm)/He data suggest deformation of the
Shillong Plateau initiated in mid- to late-Miocene time,
significantly earlier than was previously estimated from the
sedimentary record alone. Helium ages collected within 150 m
depth from the plateau surface vary systematically with depth
Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
Lett. (2008), doi:10.1016/j.epsl.2008.01.045
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between 116 and 14 Ma and are suggestive of slow cooling
during this time interval. Samples collected on a vertical tran-
sect along the southern limb of the anticline indicate a change to
rapid cooling between 14 and 8Ma, which we associate with the
initiation of fold growth and faulting at depth. Geomorphic and
fluvial analyzes used to qualitatively assess the fault geometry
beneath the Shillong Plateau suggest steeply dipping faults.
Fault geometry, combined with vertical fault offset and timing
of fault initiation from our helium data, allow us to estimate a
geologically-averaged horizontal and vertical faulting rates of
1.0–2.0 and 0.7–1.4 mm/yr respectively.

Our analysis of high resolution digital topographic data
suggests that the underlying geometry driving uplift of the
plateau is a south verging fold. Steepened channels in streams
flowing north from the apex of this fold confirm the location,
strike and sense of slip of the geodetically-inferred subsurface
south-dipping Oldham fault, however, despite hosting the
Mw=8.1 1897 ‘Great Assam’ earthquake, the fault appears to
be associated with limited cumulative slip. Symmetrical uplift
of the Shillong Plateau invoking a pair of conjugate faults
(Biham and England, 2001) is thus too simple a model to explain
the initiation and rise of the plateau.

Deformation of the Shillong Plateau represents a change
in the Himalayan strain partitioning by widening the zone
of convergence along the eastern Himalayan plate boundary.
New timing constraints for fold initiation given by cooling
histories suggests that deformation of the Shillong Plateau
may be temporally linked to a number of kinematic changes
within the Himalayan and Tibetan orogen, as well as along
the eastern India–Burma plate boundary. These events include
the onset of E–Wextension in central Tibet, eastward expansion
of high topography of the Tibetan Plateau, onset of rotation
of crustal fragments in southeastern Tibet, and re-establishment
of eastward subduction beneath the Indo-Burman ranges.We hy-
pothesize that these mid-late Miocene structural differences
in the eastern Himalaya and development of new faults and
topography growth in eastern Tibet occur because of a change in
the stress state on the collisional plate boundary. We suggest that
initiation of faulting beneath the Shillong Plateau moved the
plate boundary southward such that transitional and oceanic
lithosphere underthrust beneath the Shillong Plateau entered the
main collision zone. The change in strain partitioning by fault
initiation beneath the Shillong Plateau ‘dismembered’ the
eastern Himalayan arc by southward propagation of faulting
into the ‘downgoing’ Indian plate, which changed the location of
the main plate boundary between continental and transitional/
oceanic lithosphere. We posit that this fundamental change in
lithospheric type at the plate boundary initiated a series of other
kinematic changes affecting deformation in regions more than
1000 km interior to the orogen.
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Appendix A. (U-Th)/He sample preparation and
analytical techniques

Apatite separates for (U-Th)/He analyzes were produced
from Neoproterozoic granitoids and gneisses (Ghosh et al.,
2005) collected during a field campaign 2004 in Meghalaya,
India (Table 1). Grains were initially selected for euhedral
morphology and scanned for visible inclusions of potentially
high U or Th-rich phases under a ~120×binocular microscope
using cross-polars. Prior to analysis, grains were measured for
the alpha-ejection correction (Farley et al., 1996; Farley, 2000).
UN
CO
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Table A1
(U-Th-Sm)/He analytical data

Sample U Th He Mass Radius

Replicate (ppm) (ppm) (nmol/g) (µg) (µm)

04Sh3a 33 112 3.95 4.87 51
04Sh3b 10 34 0.75 5.41 57
04Sh3c 23 57 2.27 7.79 69
04Sh3d 11 26 0.76 7.55 66
04Sh3e 17 49 1.36 7.81 57
04Sh3f 22 65 1.20 4.81 57
04Sh3g 10 27 1.30 3.91 57
04Sh3h 12 30 1.72 8.22 69
04Sh4a 31 117 1.39 3.34 51
04Sh4b 38 150 3.8 4.78 62
04Sh4c 8 36 0.52 4.5 55
04Sh4d 72 148 3.94 5.64 56
04Sh5a 41 170 3.16 5.11 57
04Sh5b 8 31 2.56 6.18 63
04Sh5d 11 40 2.44 2.47 51
04Sh5e 13 56 1.86 3.89 55
04Sh5f 24 90 1.81 6.84 58
04Sh5g 23 75 11.65 3.29 54
04Sh5h 10 42 1.31 3.17 53
04Sh5i 52 197 15.25 3.27 49
04Sh6a 35 163 5.47 3.90 51
04Sh6d 46 213 8.52 4.7 54
04Sh6e 37 144 2.38 7.79 69
04Sh6f 26 92 3.59 9.45 68
04Sh6gb 21 90 23.52 2.8 46
04Sh6h 54 280 3.91 4.75 66
04Sh6i 41 191 1.92 3.48 48
04Sh6jb 29 130 12.49 3.82 46
04Sh6k 29 136 3.99 3.91 53
04Sh6l 27 92 4.8 2.80 50

Please cite this article as: Clark, M.K., Bilham, R., Miocene rise of the Shillong Pla
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8Helium outgassing was performed by laser heating procedures
8(House et al., 1999; House et al., 2000). After outgassing, grains
8were retrieved, dissolved and spiked with 235U and 230Th and
8analyzed in a Finnigan Element inductively couple plasma mass
8spectrometer (ICPMS). All replicate data for a given sample are
8single-grain analyzes. The number of grains available for each
8sample varied with the amount and quality of apatite (Table A1).
8We attempted to run at least 8 replicate analyzes, but some
8samples did not yield sufficient qualitymaterial formore than four
8replicate analyzes.
8Mean ages are reported as the average of replicate analyzes
8(Table 1). Propagated errors on He ages based on the analytical
8uncertainty in U, Th, and He measurements are 4% (2σ) for
8laser samples (Farley, 2000), however we report a 6% (2σ)
8uncertainty for all replicate ages based on the reproducibility
8of laboratory standards (Farley, 2002). Mean errors are reported
8at 2σ as standard errors using the standard deviation of the
8replicate analyzes divided by (n−1) where n is the number of
8replicate analyzes performed (Table 1). This uncertainty
8estimate is much larger than the analytical error alone and is
8intended to reflect the age grain-to-grain age variability that
8is typically observed to greater or lesser degree in all samples
8(Clark and Farley, in press). In general, age variability is greater
8for single-grain replicate analyzes compared to multi-grain rep-
8licate aliquots of previous studies that average several to tens of
8grains.
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Length Ft Sm Raw age Corrected age

(µm) (ppm) (Ma) (Ma±2σ)

343 0.74 555 12.2 16.3±1.0
309 0.76 261 7.5 9.7±0.6
309 0.79 372 11.5 14.5±0.9
326 0.79 171 8.3 10.5±0.6
446 0.77 323 8.8 11.4±0.7
274 0.76 393 5.9 7.8±0.5
223 0.75 142 15.0 20±1.2
326 0.80 194 16.5 20.8±1.2
235 0.73 647 4.3 5.9±0.4
228 0.76 826 7.6 9.9±0.6
254 0.74 465 5.6 7.5±0.5
333 0.76 983 6.7 8.8±0.5
291 0.76 952 7.1 9.3±0.6
291 0.77 421 30.7 38±2.3
174 0.71 360 21.1 29.2±1.8
238 0.74 427 12.8 17.1±1.0
376 0.77 489 7.2 9.4±0.6
209 0.73 591 52.0 70.2±4.2
210 0.73 369 11.7 15.9±1.0
249 0.72 756 28.1 38.8±2.4
274 0.73 852 13.8 18.5±1.1
257 0.74 679 16.3 22±1.3
309 0.79 722 6.1 7.7±0.5
375 0.80 568 13.7 17.1±1.0
179 0.69 441 100.5 143.9±8.6
204 0.77 1236 5.9 7.7±0.5
285 0.72 807 4.1 5.6±0.3
330 0.72 695 37.8 52.5±3.2
258 0.74 701 11.9 16.1±1.0
208 0.72 569 15.3 21.2±1.3
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04Sh6m 36 152 2.60 4.0 52 278 0.73 661 6.6 9±0.5
04Sh7b 16 54 0.77 3.80 54 240 0.74 384 4.9 6.5±0.4
04Sh7c 40 182 3.10 9.85 64 452 0.79 804 6.8 8.6±0.5
04Sh7d 11 38 0.39 9.2 68 362 0.80 425 3.5 4.3±0.3
04Sh7e 8 30 0.89 8.38 64 380 0.79 364 10.3 13±0.8
04Sh8a 4 14 0.34 6.1 57 343 0.76 179 8.4 10.6±0.6
04Sh8b 34 125 4.89 7.51 57 429 0.77 710 14.3 18.3±1.1
04Sh8c 35 155 1.47 2.65 40 309 0.68 679 3.8 5.6±0.3
04Sh8d 10 37 0.53 4.21 57 240 0.75 372 5.3 7.1±0.4
04Sh8e 33 123 2.32 7.27 63 343 0.78 684 6.9 8.9±0.5
04Sh8f 65 289 3.69 3.80 54 240 0.74 962 5.1 6.9±0.4
04Sh8g 71 333 8.4 3.65 51 257 0.73 938 9.9 13.5±0.8
04Sh9Aa 20 106 8.8 3.16 51 223 0.72 343 32.6 44.6±2.7
04Sh9Ab 11 62 2.97 2.89 46 257 0.70 354 21.6 30.1±1.8
04Sh9Ac 2 5 0.53 3.91 57 223 0.75 169 33.9 41.3±2.5
04Sh9Ae 11 52 4.94 10.85 109 171 0.83 124 38.5 46.6±2.8
04Sh9Af 24 136 13.97 5.17 66 223 0.77 432 45.8 59.5±3.6
04Sh9Ag 17 88 3.12 5.11 57 291 0.75 218 15.2 20.2±1.2
04Sh10a 70 86 50.38 4.94 57 288 0.76 119 101.7 133.2±8.0
04Sh10b 42 76 23.71 7.16 72 257 0.80 130 72.0 90.2±5.4
04Sh10c 68 107 33.23 2.43 44 238 0.70 119 65.4 93.4±5.6
04Sh10d 76 104 43.34 12.38 76 403 0.82 152 78.8 96±5.8
04Sh13a 19 54 2.91 11.24 50 279 0.73 91 65.3 89.1±5.3
04Sh13b 28 108 3.81 23.35 37 250 0.65 294 79.3 121.1±7.3
04Sh13c 76 310 4.7 77.82 35 239 0.64 531 95.2 148.8±8.9
04Sh13d 17 67 4.5 12.43 42 189 0.67 160 69.9 103.6±6.2

Table A1 (continued )

Sample U Th He Mass Radius Length Ft Sm Raw age Corrected agea

Replicate (ppm) (ppm) (nmol/g) (µg) (µm) (µm) (ppm) (Ma) (Ma±2σ)
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a Corrected for alpha-ejection after Farley et al. (1996). Errors on single replicate analyses are 6% (2σ) and represent uncertainty on reproducibility of laboratory
standards (Farley, 2002).
b Denotes replicates excluded from mean age calculated in Table 1 because of excess He compared to other replicated with similar U, Th, and Sm values.
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